Current Issue : October-December Volume : 2023 Issue Number : 4 Articles : 5 Articles
Currently, the solid lipid nanoparticles (SLNs) are utilized as a novel approach for the controlled drug delivery system (CDDS). Tacrolimus (TCM), a lipophilic drug, can easily be encapsulated in the hydrophobic core of these SLNs using nanoprecipitation technique. The current aim was to develop the controlled release Poloxamer (PLX) facilitated TCM loaded SLNs (PLX/TCMSLNs), followed by their physicochemical evaluations, including chemical compatibility, particle size, surface charge, surface morphology, nature of SLNs, loading efficiency (LE), entrapment efficiency (EE), in vitro drug release studies, release kinetic modeling, and statistical evaluation. Here we also evaluate physicochemical properties of TCM and investigate solubility profile for improvement and dissolution rate of PLX/TCM-SLNs. PLX was used in the process as a polymer due to its low toxicity and weak immunogenic properties. The prepared formulation was characterized by scanning electron microscopy (SEM) images, and Fourier transform infrared spectroscopy (FTIR) has confirmed the compatibility of the selected ingredients, whereas particle size analysis showed that prepared PLX/TCM-SLNs were of nanosized (120:6 ± 9nm) having zeta potential of −21.3 Mv. On the other hand, SEM had revealed the smooth and uniform surface of the particle, while X-ray diffraction (XRD) confirmed the uniform surface as crystalline structure of TCM in PLX/TCM-SLNs masked. A satisfactory level of EE (94:5 ± 2:74%) has also been noticed. Furthermore, in vitro drug release studies have explored the controlled release of drug during 8 hours, following zero order release kinetics and diffusion type of release mechanism. Outcomes of the studies have advocated the successful preparation of SLNs, as controlled release PLX/TCM-SLNs have been prepared efficiently....
Colon-targeted drug delivery is gradually attracting attention because it can effectively treat colon diseases. Furthermore, electrospun fibers have great potential application value in the field of drug delivery because of their unique external shape and internal structure. In this study, a core layer of hydrophilic polyethylene oxide (PEO) and the anti-colon-cancer drug curcumin (CUR), a middle layer of ethanol, and a sheath layer of the natural pH-sensitive biomaterial shellac were used in a modified triaxial electrospinning process to prepare beads-on-the-string (BOTS) microfibers. A series of characterizations were carried out on the obtained fibers to verify the process–shape/structure– application relationship. The results of scanning electron microscopy and transmission electron microscopy indicated a BOTS shape and core–sheath structure. X-ray diffraction results indicated that the drug in the fibers was in an amorphous form. Infrared spectroscopy revealed the good compatibility of the components in the fibers. In vitro drug release revealed that the BOTS microfibers provide colon-targeted drug delivery and zero-order drug release. Compared to linear cylindrical microfibers, the obtained BOTS microfibers can prevent the leakage of drugs in simulated gastric fluid, and they provide zero-order release in simulated intestinal fluid because the beads in BOTS microfibers can act as drug reservoirs....
Twin-screw wet granulation (TSWG) is a method of continuous pharmaceutical manufacturing and a potential alternative method to batch granulation processes. It has attracted more and more interest nowadays due to its high efficiency, robustness, and applications. To improve both the product quality and process efficiency, the process understanding is critical. This article reviews the recent work in process understanding and optimization for TSWG. Various aspects of the progress in TSWG like process model construction, process monitoring method development, and the strategy of process control for TSWG have been thoroughly analyzed and discussed. The process modeling technique including the empirical model, the mechanistic model, and the hybrid model in the TSWG process are presented to increase the knowledge of the granulation process, and the influence of process parameters involved in granulation process on granule properties by experimental study are highlighted. The study analyzed several process monitoring tools and the associated technologies used to monitor granule attributes. In addition, control strategies based on process analytical technology (PAT) are presented as a reference to enhance product quality and ensure the applicability and capability of continuous manufacturing (CM) processes. Furthermore, this article aims to review the current research progress in an effort to make recommendations for further research in process understanding and development of TSWG....
Residual solvents in pharmaceutical excipients, active pharmaceutical ingredients (APIs), and finished products are usually analyzed using gas chromatography (GC)-based techniques according to a pharmacopeial monograph, such as the United States Pharmacopeia’s (USP) chapter <467>. GC analyses are often slow, which limits sample throughput. Selected ion flow tube mass spectrometry (SIFT-MS) removes the rate-limiting chromatographic separation step, potentially offering faster sample analyses. This approach was demonstrated recently with the publication of an alternative SIFT-MS procedure which was successfully validated against the performance criteria in USP chapter <1467>. The present study expands upon the previous work by conducting a head-tohead comparison of GC-flame ionization detection (GC-FID) and SIFT-MS procedures. The results obtained in this cross-platform study demonstrated similar performance for the GC-FID and SIFT-MS procedures for linearity (R2 > 0.94 and 0.97, respectively) and repeatability (<17%RSD and <10%RSD). For accuracy and recovery, acceptance criteria (within 20%) were achieved for most compounds across the two drug products (SIFT-MS suffered fewer failures, possibly due to shorter wait times prior to analysis). Additionally, SIFT-MS analyzed samples over 11-fold faster than GC-FID, increasing daily sample throughput and reducing the time taken to determine the result. This study therefore suggests that residual solvent analysis using SIFT-MS may support workflow improvements for pharmaceutical manufacturers....
Hot-melt extrusion is increasingly applied in the pharmaceutical area as a continuous processing technology, used to design custom products by co-processing drugs together with functional excipients. In this context, the residence time and processing temperature during extrusion are critical process parameters for ensuring the highest product qualities, particularly of thermosensitive materials. Within this study, a novel strategy is proposed to predict the residence time distribution and melt temperature during pharmaceutical hot-melt extrusion processes based on experimental data. To do this, an autogenic extrusion mode without external heating and cooling was applied to process three polymers (Plasdone S-630, Soluplus and Eudragit EPO) at different specific feed loads, which were set by the screw speed and the throughput. The residence time distributions were modeled based on a two-compartment approach that couples the behavior of a pipe and a stirred tank. The throughput showed a substantial effect on the residence time, whereas the influence of the screw speed was minor. On the other hand, the melt temperatures during extrusion were mainly affected by the screw speed compared to the influence of the throughput. Finally, the compilation of model parameters for the residence time and the melt temperature within design spaces serve as the basis for an optimized prediction of pharmaceutical hot-melt extrusion processes....
Loading....