Current Issue : October-December Volume : 2023 Issue Number : 4 Articles : 5 Articles
Advances in machine learning and artificial intelligence (AI) techniques bring new opportunities to numerous intractable tasks for operation and control in modern electric distribution systems. Nevertheless, AI applications for such grids as cyber-physical systems encounter multifaceted challenges, e.g., high requirements for the quality and quantity of training data, data efficiency, physical inconsistency, interpretability, and privacy concerns. This paper provides a systematic overview of the state-of-the-art AI methodologies in the post-pandemic era, represented by transfer learning, deep attention mechanism, graph learning, and their combination with reinforcement learning and physicsguided neural networks. Dedicated research efforts on harnessing such recent advances, including power flow, state estimation, voltage control, topology identification, and line parameter calibration, are categorized and investigated in detail. Revolving around the characteristics of distribution system operation and integration of distributed energy resources, this paper also illuminates prospects and challenges typified by the privacy, explainability, and interpretability of such AI applications in smart grids. Finally, this paper attempts to shed light on the deeper and broader prospects in the realm of smart distribution grids by interoperating them with smart building and transportation electrification...
Artificial Intelligence (AI) has emerged as a transformative technology in the scientific community with the potential to accelerate and enhance research in various fields. ChatGPT, a popular language model, is one such AI-based system that is increasingly being discussed and being adapted in scientific research. However, as with any technology, there are challenges and limitations that need to be addressed. This paper focuses on the challenges and limitations that ChatGPT faces in the domain of organic materials research. This paper will take organic materials as examples in the use of ChatGPT. Overall, this paper aims to provide insights into the challenges and limitations of researchers working in the field of organic materials....
Convolutional neural networks (CNNs) are often used in tasks involving vision processing, and unclear images can hinder the performance of convolutional neural networks and increase its computational time. Furthermore, artificial intelligence (AI) and machine learning (ML) are related technologies, which are considered a branch of computer science, which are used to simulate and enhance human intelligence. In e-healthcare, AI and ML can be used to optimize the workflow, automatically process large amounts of medical data, and provide effective medical decision support. In this paper, the authors take several mainstream artificial intelligence models currently open on the market for reference. In this paper, the optimized model (AL-CNN) is tested for noise image recognition, and the AL-CNN model is established by using activation functions, matrix operations, and feature recognition methods, and the noisy images are processed after custom configuration. Not only does this model require no prior preparation when processing images, but it also improves the accuracy of dealing with noise in convolutional neural networks. In the AL-CNN in this paper, the architecture of the convolutional neural network includes a noise layer and a layer that can be automatically resized. After the comparison of the recognition experiments, the accuracy rate of AL-CNN is 20% higher than that of MatConvNet-moderate, and the accuracy rate is 40% higher than that of MatConvNet-chronic. In the second set of experiments, the accuracy exceeds MXNet and TensorFlow by 50% and 70%, respectively. In addition, the authors optimized the convolutional layer, pooling layer, and loss function of AL-CNN in different parameters, which improved the stability of noise processing, respectively. After customizing the two configuration optimizations, the authors found that the second optimized AL-CNN has higher recognition accuracy, and after the optimization test, the error rate can be continuously decreased as the number of recognition increases in a very short number of times....
Navigation and positioning is a new growth point of wireless services. And seamless positioning is the current development trend of navigation and positioning services. In view of the problems that dynamic handover cannot be performed during site movement, STA only selects the optimal AP according to the indication of received signal strength, and the handover delay is too long. This paper proposes a research on indoor and outdoor seamless positioning technology based on artificial intelligence and intelligent switching algorithm. The purpose is to study the influence of reducing the positioning data with too large error on the final positioning result. The method of this paper is to propose an intelligent switching algorithm and then discuss the research status and development direction of indoor positioning technology and outdoor positioning technology, respectively, and point out the switching methods between them. The role of these methods is to analyze the current situation of indoor and outdoor navigation technology, especially the development route of seamless positioning technology. It determines the strategy of integrating heterogeneous positioning systems to build a seamless positioning system to maximize the use of existing positioning system resources. This paper studies the design and implementation of the seamless positioning system through the simulation experiment of the intelligent switching algorithm and finally tests the system through the experimental vehicle. The online experiment results show that the system can achieve high positioning accuracy in indoor and outdoor environments, especially at its junction, and the positioning errors in all directions are within 0.2 m....
This paper provides a comprehensive and systematic review of fault localization methods based on artificial intelligence (AI) in power distribution networks described in the literature. The review is organized into several sections that cover different aspects of the methods proposed. It first discusses the advantages and disadvantages of various techniques used, including neural networks, fuzzy logic, and reinforcement learning. The paper then compares the types of input and output data generated by these algorithms. The review also analyzes the data-gathering systems, including the sensors and measurement equipment used to collect data for fault diagnosis. In addition, it discusses fault type and DG considerations, which, together with the data-gathering systems, determine the applicability range of the methods. Finally, the paper concludes with a discussion of future trends and research gaps in the field of AI-based fault location methods. Highlighting the advantages, limitations, and requirements of current AI-based methods, this review can serve the researchers working in the field of fault location in power systems to select the most appropriate method based on their distribution system and requirements, and to identify the key areas for future research....
Loading....