Current Issue : January-March Volume : 2024 Issue Number : 1 Articles : 5 Articles
Fexuprazan is a potassium-competitive acid blocker approved for treating gastric-acidrelated diseases. Although the effectiveness of the recent formulation fexuprazan 10 mg has been demonstrated in Phase 3 clinical trials, data on the pharmacokinetics (PKs) of administering fexuprazan 10 mg twice daily at a 12 h interval are lacking. Moreover, it is imperative to ensure the bioequivalence of the new formulation with the previously approved 40 mg formulation. This study evaluated the pharmacokinetics (PKs) of the single- and multiple-dose oral administration of fexuprazan 10 mg tablets in healthy participants (Part 1) and investigated their bioequivalence with 40 mg tablets (Part 2). Part 1 comprised a single- and multiple-dose, one-sequence, two-period design and eight participants, while Part 2 comprised a single-dose, 2 × 2 crossover design and 24 participants. In Part 1, in Periods 1 and 2, participants received single and multiple doses (twice daily) of fexuprazan 10 mg, respectively. The maximum plasma concentration (Cmax) area under the concentration–time curve from 0 to 12 h (AUC0–12h) of the multiple-dose participants was approximately double that of the single-dose participants. In Part 2, the geometric mean ratios (90% confidence intervals) for Cmax and AUC from zero to the time of the last quantifiable concentration (AUClast) of the use of four fexuprazan 10 mg tablets to those of one fexuprazan 40 mg tablet were 1.0290 (0.9352–1.1321) and 1.0290 (0.9476–1.1174), respectively, meeting the bioequivalence criteria. Favorable PKs were observed after single and multiple administrations of one fexuprazan 10 mg tablet, and four fexuprazan 10 mg tablets were pharmacokinetically equivalent to one fexuprazan 40 mg tablet....
Sildenafil citrate, an oral drug used to treat erectile dysfunction, has low water solubility and oral bioavailability. The solubility is greatly influenced by the pH, changing from 37.25 mg/mL to 0.22 mg/mL with a change in pH from 1.2 to 8.0. This indicates that the absorption may decrease in patients who use drugs, such as proton pump inhibitors (PPIs), for gastroesophageal reflux disease. To improve the absorption of sildenafil citrate at various gastric pH levels, a sildenafil citrate orally disintegrating tablet (ODT), which has a rapid disintegration feature, was produced by a 3D printing technique. Our study investigated the pharmacokinetic parameters of the sildenafil citrate ODT in rats after oral administration and compared the absorption of the sildenafil citrate ODT and sildenafil citrate commercial tablet (RLD), with and without PPI treatment. The LC/MS/MS analysis of the plasma sildenafil concentration revealed that the area under curve from time 0 to infinity (AUC0–∞) of sildenafil in the sildenafil citrate ODT group was significantly higher than in the sildenafil citrate RLD group whether it was in combination with the PPI or not (274.8% and 144%, respectively; p < 0.05). The relative systemic bioavailability of sildenafil citrate RLD significantly decreased with the PPI, but that of sildenafil citrate ODT was not affected by the PPI. These results indicate that the relative systemic bioavailability of sildenafil citrate ODT was increased when it was prepared using the 3D printing technique and the absorption of this formulation was not affected by the PPI....
Accurate pharmacokinetic–pharmacodynamic (PK-PD) models of biofilm treatment could be used to guide formulation and administration strategies to better control bacterial lung infections. To this end, we developed a detailed pharmacodynamic model of P. aeruginosa treatment with the front-line antibiotics, tobramycin and colistin, and validated it on a detailed dataset of killing dynamics. A compartmental model structure was developed in which the key features are the diffusion of the drug through a boundary layer to the bacteria, concentration-dependent interactions with bacteria, and the passage of the bacteria through successive transit states before death. The number of transit states employed was greater for tobramycin, which is a ribosomal inhibitor, than for colistin, which disrupts bacterial membranes. For both drugs, the experimentally observed delay in the killing of bacteria following drug exposure was consistent with the sum of the diffusion time and the time for passage through the transit states. For each drug, the PD model with a single set of parameters described data across a ten-fold range of concentrations and for both continuous and transient exposure protocols, as well as for combined drug treatments. The ability to predict drug response over a range of administration protocols allows this PD model to be integrated with PK descriptions to describe in vivo antibiotic response dynamics and to predict drug delivery strategies for the improved control of bacterial lung infections....
The small-molecule antiviral drug ensitrelvir targets the 3C-like protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study evaluated its inhibitory effect on viral replication in a delayed-treatment mouse model and investigated the relationship between pharmacokinetic (PK) parameters and pharmacodynamic (PD) effects. SARS-CoV-2 gamma-straininfected BALB/c mice were orally treated with various doses of ensitrelvir starting 24 h post-infection. Effectiveness was determined 48 h after first administration based on lung viral titers. Ensitrelvir PK parameters were estimated from previously reported plasma concentration data and PK/PD analyses were performed. Ensitrelvir doses ≥ 16 mg/kg once daily, ≥8 mg/kg twice daily, or ≥8 mg/kg thrice daily for two days significantly reduced lung viral titers compared to that of the vehicle. PK/PD analyses revealed that mean AUC0–48h post-first administration, plasma concentration 48 h post-first administration (C48h), and total time above the target plasma concentration (TimeHigh) were PK parameters predictive of viral titer reduction. In conclusion, ensitrelvir dose-dependently reduced lung SARS-CoV-2 titers in mice, suggesting it inhibited viral replication. PK parameters C48h and TimeHigh were associated with sustained ensitrelvir plasma concentrations and correlated with the reduced viral titers. The findings suggest that maintaining ensitrelvir plasma concentration is effective for exerting antiviral activity against SARS-CoV-2....
This study aimed to explore the pharmacokinetics (PK) and safety of oral (PO) and intravenous (IV) lefamulin in healthy Chinese subjects and to evaluate the efficacy of the intravenous administration regimen using pharmacokinetic/pharmacodynamic (PK/PD) analysis. This study was a randomized, open-label, single- and multiple-dose, intravenous and oral administration study. PK parameters were calculated, and the probability of target attainment (PTA) and the cumulative fraction of response (CFR) after IV administration of lefamulin 150 mg 1 h q12 h were analyzed with Monte Carlo simulations. Lefamulin exhibited extensive distribution. The mean steady-state AUC0–24 h of 150 mg lefamulin IV and 600 mg lefamulin PO were 10.03 and 13.96 μg·h/mL, respectively. For Streptococcus pneumoniae and Staphylococcus aureus, based on the free-drug AUC over MIC ratio (fAUC/MIC) target of 1-log10 cfu reduction, the PK/PD breakpoints were 0.25 and 0.125 mg/L, respectively. The CFR was over 90% for both types of strains with 95% protein binding rate, suggesting that the regimen was microbiologically effective. Lefamulin was safe and well-tolerated. The PK of lefamulin in healthy Chinese subjects were consistent with that in foreign countries. Lefamulin demonstrated the microbiological effectiveness against Streptococcus pneumoniae and Staphylococcus aureus....
Loading....