Current Issue : April-June Volume : 2024 Issue Number : 2 Articles : 5 Articles
This study introduces a novel approach for enhancing the transdermal permeability of ibuprofen through the skin by utilising a rotating magnetic field (RMF). The core objective is to systematically evaluate the influence of a 50 Hz RMF on ibuprofen’s skin permeability across various formulation types, each employing distinct physical forms and excipients. The experimental setup involved Franz cells with skin as the membrane, exposed to a 50 Hz RMF in conjunction with specific formulations. Subsequent comprehensive analysis revealed a notable increase in the transdermal transport of ibuprofen, irrespective of the formulation employed. Notably, the differences in the initial 30 min of permeation were particularly pronounced. Crucially, this investigation establishes that the application of a 50 Hz RMF resulted in a remarkable over-sevenfold increase in ibuprofen permeability compared to the control group without RMF exposure. It is noteworthy that in all semi-solid pharmaceutical formulations tested, RMF effectively reduced the delay time to zero, underscoring the efficiency of RMF in overcoming barriers to transdermal drug delivery. This research positions the application of RMF as a highly promising and innovative technology, significantly enhancing the transdermal penetration of anti-inflammatory and analgesic drugs through the skin. The demonstrated effectiveness of RMF across diverse formulations suggests its potential in transdermal drug delivery, offering a novel and efficient strategy for improving therapeutic outcomes in the administration of ibuprofen and potentially other pharmaceutical agents....
Nowadays, infection diseases are one of the most significant threats to humans all around the world. An encouraging strategy for solving this issue and fighting resistant microorganisms is to develop drug carriers for a prolonged release of the antibiotic to the target site. The purpose of this work was to obtain metronidazole-encapsulated chitosan nanoparticles using an ion gelation route and to evaluate their properties. Due to the advantages of the ionic gelation method, the synthesized polymeric nanoparticles can be applied in various fields, especially pharmaceutical and medical. Loading capacity and encapsulation efficiency varFied depending on the amount of antibiotic in each formulation. Physicochemical characterization using scanning electron microscopy revealed a narrow particle size distribution where 90% of chitosan particles were 163.7 nm in size and chitosan-loaded metronidazole nanoparticles were 201.3 nm in size, with a zeta potential value of 36.5 mV. IR spectra revealed characteristic peaks of the drug and polymer nanoparticles. Cell viability assessment revealed that samples have no significant impact on tested cells. Release analysis showed that metronidazole was released from the chitosan matrix for 24 h in a prolonged course, implying that antibiotic-encapsulated polymer nanostructures are a promising drug delivery system to prevent or to treat various diseases. It is desirable to obtain new formulations based on drugs encapsulated in nanoparticles through different preparation methods, with reduced cytotoxic potential, in order to improve the therapeutic effect through sustained and prolonged release mechanisms of the drug correlated with the reduction of adverse effects....
Developing delayed-release formulations for acid-sensitive actives can be a costly and time-consuming process. However, ready-to-fill functional capsules, such as EUDRACAP® can significantly mitigate these challenges. The in vitro performance of EUDRACAP® enteric was evaluated in two typical delayed-release scenarios: for diclofenac (a drug that can cause irritation to gastric mucosa), and for omeprazole (a drug susceptible to degradation due to the acidity of gastric fluid). The prototypes were tested in HCl 0.1N according to the USP <711> for at least 2 h and compared to commercial products. The results showed that the performance of EUDRACAP® was below LOD and in compliance with the requirements for drug release in acidic media (NMT 10%). Additionally, the impurities were evaluated after the acidic stress. The low total percentage of impurities of 0.44% for diclofenac (NMT 1.50%) and 0.22% for omeprazole (NMT 2.00%) indicates a very good protection by EUDRACAP®. A comprehensive comparative analysis of the in vitro performance clearly showed the acid protection capability of EUDRACAP® enteric capsules making them a serious alternative to existing enteric dosage forms alternatives. EUDRACAP® is an accessible solution both in large-scale industrial and smaller pharmacy settings. Offering increased accessibility, affordability, and convenience to manufacturers and consumers alike and leading to improved healthcare outcomes....
Ingestible self-configurable proximity-enabling devices have been developed as a noninvasive platform to improve the bioavailability of drug compounds via swellable or self-unfolding devices. Self-unfolding foils support unidirectional drug release in close proximity to the intestinal epithelium, the main drug absorption site following oral administration. The foils are loaded with a solid-state formulation containing the active pharmaceutical ingredient and then coated and rolled into enteric capsules. The coated lid must remain intact to ensure drug protection in the rolled state until targeted release in the small intestine after capsule disintegration. Despite promising results in previous studies, the deposition of an enteric top coating that remains intact after rolling is still challenging. In this study, we compare different mixtures of enteric polymers and a plasticizer, PEG 6000, as potential coating materials. We evaluate mechanical properties as well as drug protection and targeted release in gastric and intestinal media, respectively. Commercially available Eudragit® FL30D-55 appears to be the most suitable material due to its high strain at failure and integrity after capsule fitting. In vitro studies of coated foils in gastric and intestinal media confirm successful pH-triggered drug release. This indicates the potential advantage of the selected material in the development of self-unfolding foils for oral drug delivery....
This study addresses the challenge of developing a cheap, patient-friendly alternative to antibiotics using bacteriophages for gastrointestinal applications. It explores the feasibility of manufacturing an enteric solid dosage form containing a salmonella-specific Myoviridae phage, Felix O1, encapsulated in spray-dried trehalose/Eudragit microparticles. The spray-dried powder was further formulated by combining the spray-dried microparticles with magnesium stearate to facilitate the fabrication of tablets using direct compression. The paper presents a comprehensive evaluation of the tablets with measurements of phage viability during tablet fabrication using a range of compression settings and, after tablet disintegration, dissolution and friability. Phage viability measurements were performed using storage stability testing of spray-dried powders and tablets in sealed vials at 4 ◦C, 20 ◦C and 30 ◦C and under different humidity conditions of 0%, 50% and 65% RH. The recommended compression force range was found to be 10–15 kN for a standard 10 mm diameter tablet. The storage of tablets at 4 ◦C/0% RH was found to be the most favourable condition resulting in a ~1 log loss in titre over a six-month storage period. Storage at higher temperatures and samples exposed to high levels of humidity resulted in a significant loss in phage viability. The paper highlights challenges in developing phage formulations suitable for direct-compression tableting, which afford the phages protection when exposed to temperatures and humidity levels that do not require a cold supply chain....
Loading....