Current Issue : July-September Volume : 2024 Issue Number : 3 Articles : 5 Articles
Background: Drug release from controlled release delivery systems is influenced by various factors, including the polymer’s grade and the drug’s hydration form. This study aimed to investigate the impact of these factors on the controlled release of theophylline (THN). This research compares the monohydrate form found in branded products with the anhydrous form in generic equivalents, each formulated with different polymer grades. Methods: Quality control assessment was conducted alongside in vitro evaluation, complemented by various analytical techniques such as X-ray diffraction (XRD) and scanning electron microscopy (SEM). Additionally, thermal analyses using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed. Results: Quality control assessments demonstrated that the generic tablets exhibited lower average weight and resistance force compared to the branded ones. In vitro tests revealed that generic tablets released contents within 120 min, compared to 720 min for the branded counterpart. Characterization using XRD and SEM identified disparities in crystallinity and particle distribution between the three samples. Additionally, the thermal analysis indicated consistent endothermic peaks across all samples, albeit with minor variations in heat flow and decomposition temperatures between the two products. Conclusions: This study demonstrated that variations in polymer grade and hydration form significantly impact THN release....
The coating process for solid dosage forms is widely used in the pharmaceutical industry but presents challenges for small-scale production, needed in personalized medicine and clinical or galenic settings. This study aimed to evaluate immersion coating, a cost-effective small-scale method, for enteric-coated gelatin capsules using standard equipment. Two enteric coating polymers and different polymer concentrations were tested, along with API solubility. Results were compared with commercially available enteric capsule shells. Successful preparation of enteric coating capsules via immersion necessitates a comprehensive grasp of API and enteric polymer behavior. However, utilizing commercially available enteric capsule shells does not guarantee ease or robustness, as their efficacy hinges on the attributes of the active ingredient and excipients. Notably, coating with Eudragit S100 stands out for its superior process robustness, requiring minimal or no development time, thus representing the best option for small-scale enteric capsule production....
Chitosan, being a biocompatible and mucoadhesive polysaccharide, is one of the most preferred hydrogel-forming materials for drug delivery. The objectives of the present study are to obtain spray-dried microparticles based on low-molecular-weight chitosan and study their potential application as cargo systems for the orally active drug benzydamine hydrochloride. Three types of particles are obtained: raw chitosan particles (at three different concentrations), cross-linked with sodium tripolyphosphate (NaTPP) particles (at three different chitosan:NaTPP ratios), and particles coated with mannitol (at three different chitosan:mannitol ratios), all of them in the size range between 1 and 10 μm. Based on the loading efficiency and the yields of the formulated hydrogel particles, one model of each type is chosen for further investigation of the effect of the cross-linker or the excipient on the properties of the gel structures. The morphology of both empty and benzydamine hydrochloride-loaded chitosan particles was examined by scanning electron microscopy, and it was quite regular and spherical. Interactions and composition in the samples are investigated by Fourier-transformed infrared spectroscopy. The thermal stability and phase state of the drug and drug-containing polymer matrixes were tested by differential scanning calorimetry and X-ray powdered diffraction, revealing that the drug underwent a phase transition. A drug release kinetics study of the chosen gel-based structures in simulated saliva buffer (pH = 6.8) and mathematical modeling of the process were performed, indicating theWeibull model as the most appropriate one....
The consumption of fiber in the human diet is a global recommendation to ensure a healthy diet. Quinoa (Chenopodium quinoa Willd.), a gluten-free grain, and chia (Salvia hispanica), a seed, contain a high fiber content, and both have the potential to be used in the development of nutraceutical and pharmaceutical formulations. An interesting characteristic of chia is its ability to form viscous mucilage when in contact with water, making it a potential binder in solid formulations. However, there are no studies on chia as a binder, and therefore, the objective of the present study was to evaluate the feasibility of using chia as a binder to produce quinoa granules and, subsequently, develop chewable tablet formulations. The quinoa and chia were in a powder form and then transformed into a wet mass with the help of mixer torque rheometer (MTR) equipment. In the wet granulation form, the following parameters were tested: multiple additions, 15 g of material, and 25 timepoints for the addition of 1 mL of water. An experimental design was carried out to evaluate the impact of the variables on the MTR results for subsequent granulation. The granulation point was possible for T1–T9, and most formulations gave satisfactory results, such as an acceptable resistance of the granules. In the end, a formulation was selected for the development of chewable tablets containing quinoa and chia fibers....
The rice bran and rice bran wax of the KJ CMU107 rice strain were investigated as potential tablet lubricants in a directly compressed tablet formulation. Stabilized full-fatted rice bran (sFFRB), stabilized defatted rice bran (sDFRB), and rice bran wax (RBW) extracted and purified from crude rice bran oil (cRBO) were tested. Two commercial lubricants, including magnesium stearate (MGS) and hydrogenated cottonseed oil (HVO), were employed as the standards in the formulated mixtures, which contained spray-dried rice starch (SDRS) as a diluent. The tableting was carried out for each formulation, and the obtained tablets were physically and mechanically evaluated. Among the parameters investigated were the general appearance, ejection force, weight variation, hardness, friability, and disintegration time. The powder flow was also determined for each formulation. The results showed that the tablet ejection forces for all the lubricated formulations (58–259 N) were significantly lower than that of the non-lubricated control formulation (349 N). The use of sFFRB as a lubricant at 0.5–2.0% w/w could lower the ejection force up to 78%, but the hardness reduced so drastically that the formulations failed the friability test due to the chipping of the tablets’ edges. Moreover, sDFRB performed significantly better as the use at 0.5–1.0% w/w in the formulation helped to lower the ejection forces by up to 80% while maintaining the changes in the tablet hardness within 10%. RBW functioned effectively as a tablet lubricant at a concentration of 0.5% w/w, yielding tablets with good strength comparable to standard HVO lubricant while helping to reduce the ejection force by 82%. In formulations with good lubrication, i.e., friability < 1%, the powder flow was improved, and the tablet disintegration times were within the same range as the control and HVO formulations. In conclusion, sDFRB displayed a lubricant property at concentrations between 0.5 and 1.0% w/w, with slightly negative effects on the tablet hardness. RBW from KJ CMU107 rice was an effective tablet lubricant at 0.5% w/w, with no effect on tablet hardness. Both materials can be further developed for use as commercial lubricants in direct compression....
Loading....