Current Issue : July-September Volume : 2024 Issue Number : 3 Articles : 5 Articles
Background Cone-beam computed tomography (CBCT) has been introduced for breast-specimen imaging to identify a free resection margin of abnormal tissues in breast conservation. As well-known, typical micro CT consumes long acquisition and computation times. One simple solution to reduce the acquisition scan time is to decrease of the number of projections, but this method generates streak artifacts on breast specimen images. Furthermore, the presence of a metallic-needle marker on a breast specimen causes metal artifacts that are prominently visible in the images. In this work, we propose a deep learning-based approach for suppressing both streak and metal artifacts in CBCT. Methods In this work, sinogram datasets acquired from CBCT and a small number of projections containing metal objects were used. The sinogram was first modified by removing metal objects and up sampling in the angular direction. Then, the modified sinogram was initialized by linear interpolation and synthesized by a modified neural network model based on a U-Net structure. To obtain the reconstructed images, the synthesized sinogram was reconstructed using the traditional filtered backprojection (FBP) approach. The remaining residual artifacts on the images were further handled by another neural network model, ResU-Net. The corresponding denoised image was combined with the extracted metal objects in the same data positions to produce the final results. Results The image quality of the reconstructed images from the proposed method was improved better than the images from the conventional FBP, iterative reconstruction (IR), sinogram with linear interpolation, denoise with ResUNet, sinogram with U-Net. The proposed method yielded 3.6 times higher contrast-to-noise ratio, 1.3 times higher peak signal-to-noise ratio, and 1.4 times higher structural similarity index (SSIM) than the traditional technique. Soft tissues around the marker on the images showed good improvement, and the mainly severe artifacts on the images were significantly reduced and regulated by the proposed. method. Conclusions Our proposed method performs well reducing streak and metal artifacts in the CBCT reconstructed images, thus improving the overall breast specimen images. This would be beneficial for clinical use....
Background Ultrasound imaging is the most frequently performed for the patients with chronic hepatitis or liver cirrhosis. However, ultrasound imaging is highly operator dependent and interpretation of ultrasound images is subjective, thus well-trained radiologist is required for evaluation. Automated classification of liver fibrosis could alleviate the shortage of skilled radiologist especially in low-to-middle income countries. The purposed of this study is to evaluate deep convolutional neural networks (DCNNs) for classifying the degree of liver fibrosis according to the METAVIR score using US images. Methods We used ultrasound (US) images from two tertiary university hospitals. A total of 7920 US images from 933 patients were used for training/validation of DCNNs. All patient were underwent liver biopsy or hepatectomy, and liver fibrosis was categorized based on pathology results using the METAVIR score. Five well-established DCNNs (VGGNet, ResNet, DenseNet, EfficientNet and ViT) was implemented to predict the METAVIR score. The performance of DCNNs for five-level (F0/F1/F2/F3/F4) classification was evaluated through area under the receiver operating characteristic curve (AUC) with 95% confidential interval, accuracy, sensitivity, specificity, positive and negative likelihood ratio. Results Similar mean AUC values were achieved for five models; VGGNet (0.96), ResNet (0.96), DenseNet (0.95), EfficientNet (0.96), and ViT (0.95). The same mean accuracy (0.94) and specificity values (0.96) were yielded for all models. In terms of sensitivity, EffcientNet achieved highest mean value (0.85) while the other models produced slightly lower values range from 0.82 to 0.84. Conclusion In this study, we demonstrated that DCNNs can classify the staging of liver fibrosis according to METAVIR score with high performance using conventional B-mode images. Among them, EfficientNET that have fewer parameters and computation cost produced highest performance. From the results, we believe that DCNNs based classification of liver fibrosis may allow fast and accurate diagnosis of liver fibrosis without needs of additional equipment for add-on test and may be powerful tool for supporting radiologists in clinical practice....
Background Asymptomatic COVID-19 carriers with normal chest computed tomography (CT) scans have perpetuated the ongoing pandemic of this disease. This retrospective study aimed to use automated machine learning (AutoML) to develop a prediction model based on CT characteristics for the identification of asymptomatic carriers. Methods Asymptomatic carriers were from Yangzhou Third People’s Hospital from August 1st, 2020, to March 31st, 2021, and the control group included a healthy population from a nonepizootic area with two negative RT‒PCR results within 48 h. All CT images were preprocessed using MATLAB. Model development and validation were conducted in R with the H2O package. The models were built based on six algorithms, e.g., random forest and deep neural network (DNN), and a training set (n = 691). The models were improved by automatically adjusting hyperparameters for an internal validation set (n = 306). The performance of the obtained models was evaluated based on a dataset from Suzhou (n = 178) using the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F1 score. Results A total of 1,175 images were preprocessed with high stability. Six models were developed, and the performance of the DNN model ranked first, with an AUC value of 0.898 for the test set. The sensitivity, specificity, PPV, NPV, F1 score and accuracy of the DNN model were 0.820, 0.854, 0.849, 0.826, 0.834 and 0.837, respectively. A plot of a local interpretable model-agnostic explanation demonstrated how different variables worked in identifying asymptomatic carriers. Conclusions Our study demonstrates that AutoML models based on CT images can be used to identify asymptomatic carriers. The most promising model for clinical implementation is the DNN-algorithm-based model....
Kidney disease remains one of the most common ailments worldwide, with cancer being one of its most common forms. Early diagnosis can significantly increase the good prognosis for the patient. The development of an artificial intelligence-based system to assist in kidney cancer diagnosis is crucial because kidney illness is a global health concern, and there are limited nephrologists qualified to evaluate kidney cancer. Diagnosing and categorising different forms of renal failure presents the biggest treatment hurdle for kidney cancer. Thus, this article presents a novel method for detecting and classifying kidney cancer subgroups in Computed Tomography (CT) images based on an asymmetric local statistical pixel distribution. In the first step, the input image is non-overlapping windowed, and a statistical distribution of its pixels in each cancer type is built. Then, the method builds the asymmetric statistical distribution of the image’s gradient pixels. Finally, the cancer type is identified by applying the two built statistical distributions to a Deep Neural Network (DNN). The proposed method was evaluated using a dataset collected and authorised by the Dhaka Central International Medical Hospital in Bangladesh, which includes 12,446 CT images of the whole abdomen and urogram, acquired with and without contrast. Based on the results, it is possible to confirm that the proposed method outperformed state-of-the-art methods in terms of the usual correctness criteria. The accuracy of the proposed method for all kidney cancer subtypes presented in the dataset was 99.89%, which is promising....
Purpose The tumor immune microenvironment is a valuable source of information for predicting prognosis in breast cancer (BRCA) patients. To identify immune cells associated with BRCA patient prognosis from the Cancer Genetic Atlas (TCGA), we established an MRI-based radiomics model for evaluating the degree of immune cell infiltration in breast cancer patients. Methods CIBERSORT was utilized to evaluate the degree of infiltration of 22 immune cell types in breast cancer patients from the TCGA database, and both univariate and multivariate Cox regressions were employed to determine the prognostic significance of immune cell infiltration levels in BRCA patients. We identified independent prognostic factors for BRCA patients. Additionally, we obtained imaging features from the Cancer Imaging Archive (TCIA) database for 73 patients who underwent preoperative MRI procedures, and used the Least Absolute Shrinkage and Selection Operator (LASSO) to select the best imaging features for constructing an MRI-based radiomics model for evaluating immune cell infiltration levels in breast cancer patients. Results According to the results of Cox regression analysis, M2 macrophages were identified as an independent prognostic factor for BRCA patients (HR = 32.288, 95% CI: 3.100–357.478). A total of nine significant features were selected to calculate the radiomics-based score. We established an intratumoral model with AUCs (95% CI) of 0.662 (0.495–0.802) and 0.678 (0.438–0.901) in the training and testing cohorts, respectively. Additionally, a peritumoral model was created with AUCs (95% CI) of 0.826 (0.710–0.924) and 0.752 (0.525–0.957), and a combined model was established with AUCs (95% CI) of 0.843 (0.723–0.938) and 0.744 (0.491–0.965). The peritumoral model demonstrated the highest diagnostic efficacy, with an accuracy, sensitivity, and specificity of 0.773, 0.727, and 0.818, respectively, in its testing cohort. Conclusion The MRI-based radiomics model has the potential to evaluate the degree of immune cell infiltration in breast cancer patients, offering a non-invasive imaging biomarker for assessing the tumor microenvironment in this disease....
Loading....