Current Issue : July-September Volume : 2024 Issue Number : 3 Articles : 5 Articles
In the present work, X-ray photoelectron spectroscopy (XPS) survey spectra of borided AISI 316L for two different times (1 and 6 h) of exposure to simulated body fluid (SBF) were obtained after wet sliding wear. A borided layer of ~39 microns was obtained on the surface of the AISI 316L stainless steel using the thermochemical treatment of boriding. As part of the mechanical and chemical characterization of sliding wear, Berkovich nanoindentation and X-ray spectroscopy tests were used to determine the main properties of the borided layer. The results of the specific wear rate values were higher at 5 mm/s sliding speed than those recorded at 30 mm/s due to the influence of the exposure time of the sample and the complex combinations of chemical reactions with boron (e.g., B2S3, Cr2O3, and Fe2O3) on the surface during the sliding during 6 h of exposure in Hank’s solution due to the formation of the passive film. The knowledge of chemical species formed during wet sliding wear tests on borided AISI 316L is essential for understanding wear mechanisms and materials’ performance and optimizing material properties and materials’ and components’ reliability in the biomedical industry for screws and fastening plates....
In this work, the facile reflux method was used as a crystallization procedure for zeolite NaY synthesis. The zeolite mixture was aged for 7 days and then refluxed for crystallization at 100 ◦C for 12 h. The synthesized zeolite NaY was impregnated with 10, 20 and 30 wt%Ni solution to use as a catalyst for CO2 methanation. The 30 wt% of Ni on the zeolite NaY catalyst showed the highest CO2 methanation catalytic activity, with almost 100% CH4 selectivity. This can be explained by an appropriate H2 and CO2 adsorption amount on a catalyst surface being able to facilitate the surface reaction between them and further react to form products. The oxidation state of Ni and the stability of the catalyst were monitored by time-resolved X-ray absorption spectroscopy. The oxidation state of Ni2+ was reduced during the catalyst reduction prior to the CO2 methanation and it was completely reduced to Ni◦ at 600 ◦C. During CO2 methanation, Ni◦ remained unchanged. In addition, the stability test of the catalyst was conducted by exposing the catalyst to a fluctuating condition (CO2 + H2 and only CO2). The oxidation state of Ni◦ remained unchanged under the fluctuating condition. This indicated that the Ni/zeolite catalyst has high stability, which can be attributed to an appropriate binding strength between Ni and the zeolite support....
Rhodium-catalyzed reactions of 3-ethynyl-2-pentamethyldisilanylthiophene derivatives (1a–1c) have been reported. At 110 ◦C, compounds 1a–1c reacted in the presence of a rhodium complex catalyst, yielding thiophene-fused siloles (2a–2c) through intramolecular trans-bis-silylation. To understand the production of 2a from 1a, the mechanism was investigated using density functional theory (DFT) calculations....
This study introduces a novel approach for fabricating ZnS/Al2O3/TaSe2 heterostructured core/shell nanowires (NWs) through the selenization of a metallic Ta thin film precursor. The synthesis process involves a meticulously designed four-step protocol: (1) generating ZnS NWs on an oxidized silicon substrate, (2) encapsulating these NWs with a precisely controlled thin Al2O3 layer via atomic layer deposition (ALD), (3) applying a Ta precursor layer by magnetron sputtering, and (4) annealing in a Se-rich environment in a vacuum-sealed quartz ampoule to transform the Ta layer into TaSe2, resulting in the final core/shell structure. The characterization of the newly produced NWs using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) was validated using the integrity and composition of the heterostructures. Our method not only establishes a new pathway for the synthesis of TaSe2-based core/shell NWs but also extends the potential for creating a variety of core/shell NW systems with chalcogenide shells by adapting the thin film metal precursor approach. This versatility opens the way for future advancements in nanoscale material applications, particularly in electronics and optoelectronics where core/shell geometries are increasingly important....
It is known that there are significant deposits of lignite (brown coal) in Ukraine, particularly in categories A + B + C1. At the same time, certain technical and legal obstacles limit its use as an energy carrier. Therefore, new methods of using lignite and processing its products are necessary. The latter includes humic acids. It was suggested that these acids could be used to stop road bitumens from breaking down. This is because they are antioxidants that contain functional phenolic and carboxyl groups. In particular, this article analyses the nature of the influence of humic acids on the physical and mechanical properties of road petroleum bitumen and its resistance to technological aging. It was found that at a modification temperature of 120 ◦C (duration-60 min., consumption of humic acids-2.0 wt.%), this additive has a slight negative effect (changes are within permissible limits) on the plastic properties of bitumen and slightly improves its elasticity. The main reason for adding humic acids to road bitumen under the specified conditions is to improve its resistance to technological aging compared to the original binder....
Loading....