Current Issue : October-December Volume : 2024 Issue Number : 4 Articles : 5 Articles
In recent years, cloud computing has been widely used. Cloud computing refers to the centralized computing resources, users through the access to the centralized resources to complete the calculation, the cloud computing center will return the results of the program processing to the user. Cloud computing is not only for individual users, but also for enterprise users. By purchasing a cloud server, users do not have to buy a large number of computers, saving computing costs. According to a report by China Economic News Network, the scale of cloud computing in China has reached 209.1 billion yuan.Rational allocation of resources plays a crucial role in cloud computing. In the resource allocation of cloud computing, the cloud computing center has limited cloud resources, and users arrive in sequence. Each user requests the cloud computing center to use a certain number of cloud resources at a specific time....
AI and cloud native are mutually reinforcing and inseparable. Due to the huge storage and computing power requirements, most AI applications need cloud support, especially large model applications If cloud native has influenced the software industry to a considerable extent in the past few years, the big model boom means that cloud native has become a standard option for developers.This paper describes the rise of AI model applications and their integration with traditional development workflows, pointing out the challenges that enterprises and developers face when integrating large models. With the rise of cloud-native technologies, the combination of artificial intelligence and cloud computing is becoming increasingly important. Cloud-native technologies provide the infrastructure needed to build and run resilient and scalable applications, while distributed infrastructure supports multi-cloud integration, enabling a unified foundation of "one cloud, multiple computing." As an intelligent voice Assistant, Google Assistant achieves a more intelligent, convenient and efficient user experience through applications in smart home control, enterprise customer service and healthcare. Finally, this paper points out the advantages of combining Google Assistant with cloud computing, providing a more intelligent, convenient, and efficient user experience....
This paper presents a novel approach to address the challenges of self-adaptive privacy in cloud computing environments (CCE). Under the Cloud-InSPiRe project, the aim is to provide an interdisciplinary framework and a beta-version tool for self-adaptive privacy design, effectively focusing on the integration of technical measures with social needs. To address that, a pilot taxonomy that aligns technical, infrastructural, and social requirements is proposed after two supplementary surveys that have been conducted, focusing on users’ privacy needs and developers’ perspectives on self-adaptive privacy. Through the integration of users’ social identity-based practices and developers’ insights, the taxonomy aims to provide clear guidance for developers, ensuring compliance with regulatory standards and fostering a user-centric approach to self-adaptive privacy design tailored to diverse user groups, ultimately enhancing satisfaction and confidence in cloud services....
cloud computing (cloud computing) is a kind of distributed computing, referring to the network "cloud" will be a huge data calculation and processing program into countless small programs, and then, through the system composed of multiple servers to process and analyze these small programs to get the results and return to the user. This report explores the intersection of cloud computing and financial information processing, identifying risks and challenges faced by financial institutions in adopting cloud technology. It discusses the need for intelligent solutions to enhance data processing efficiency and accuracy while addressing security and privacy concerns. Drawing on regulatory frameworks, the report proposes policy recommendations to mitigate concentration risks associated with cloud computing in the financial industry. By combining intelligent forecasting and evaluation technologies with cloud computing models, the study aims to provide effective solutions for financial data processing and management, facilitating the industry's transition towards digital transformation....
Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission environment. This is achieved through the active manipulation of the wireless channel facilitated by the mobile deployment of UAVs and the intelligent reflection of signals by RISs. However, these technologies are subject to inherent limitations such as the restricted range of UAVs and limited RIS coverage, which hinder their broader application. The integration of UAVs and RISs into UAV–RIS schemes presents a promising approach to surmounting these limitations by leveraging the strengths of both technologies. Motivated by the above observations, we contemplate a novel UAV–RIS-aided MEC system, wherein UAV–RIS plays a pivotal role in facilitating communication between terrestrial vehicle users and MEC servers. To address this challenging non-convex problem, we propose an energy-constrained approach to maximize the system’s energy efficiency based on a double-deep Q-network (DDQN), which is employed to realize joint control of the UAVs, passive beamforming, and resource allocation for MEC. Numerical results demonstrate that the proposed optimization scheme significantly enhances the system efficiency of the UAV–RIS-aided time division multiple access (TDMA) network....
Loading....