Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
Driven by technological innovation, service diversification, and the evolution and defects of current networks, the 6th-generation (6G) network architecture is lacking in research. One of the challenges in this research is that the architectural design should take into account multiple factors: customers, operators, and vendors. For service-oriented and networkoriented design requirements, this article proposes a data-driven distributed autonomous architecture (DDAA) for 6G with a three-layer four-plane logical hierarchy. The architecture is simplified as four network function units (NFUs), the interaction among which is carried via dual-bus interfaces, i.e., the service-based interface (SBI) and data transmission interface (DTI). In addition, it is user data-centric and rendered as distributed autonomous domains (ADs) with different scales to better adapt to customized services. Different transition stages from the 5th generation (5G) to 6G are discussed. Network simplification evaluation is further provided by going through several signaling procedures of the 3rd-generation partnership project (3GPP), inspiring advanced research and subsequent standardization of the 6G network architecture....
The reliability of power supply systems is of utmost importance for telecommunications. In our daily lives, we are used to having constant access to the power grid with negligible risks. Standards and practices established over the years guarantee minimal problems for the household consumer and accidents in their electrical appliances. Often, the biggest inconvenience of a power failure for the average person is having to set the clock on the stove or use the flashlight on their phone. However, we rarely realize how fragile the balance on which all this is based is, but telecom companies are fully aware of this fact. Regardless of whether the problem comes from natural phenomena, accidental or intentional damage, or defects in the equipment, the equipment used in telecommunications technologies is extremely sensitive, and it is necessary to take protective measures....
The accurate prediction of the point-ahead angle (PAA) is crucial for applications of intersatellite laser links (ISLLs), especially laser ranging and continuous communication. Herein, a real-time and high-precision point-ahead-angle algorithm is presented; the principle of the algorithm is mathematically characterized, and its performance is simulated and verified using typical on-orbit scenarios. The maximum PAAs of a typical geosynchronous equatorial orbit (GEO)–GEO link and low Earth orbit (LEO)–GEO link were simulated with this algorithm, and the results are consistent with those of typical calculation methods, proving the algorithm’s accuracy. The performance of the proposed algorithm was verified using a practical engineering application of ISLLs, where it was used to calculate the pointahead angle during stable on-orbit communication. The Pearson correlations between the curves of azimuth, elevation, and total point-ahead angles, and the actual experimental data are 99.91%, 52.32%, and 98.01%, respectively. The corresponding average deviations are −5.8510 nrad, −1.0945 nrad, and −79.5403 nrad, respectively. The maximum calculation error is 5.2103%, and the calculation accuracy exceeds 94%. The above results show that the algorithm produces results that closely match actual on-orbit experimental data with high calculation accuracy, enabling the accurate prediction of the point-ahead angle and the improvement of ISLL stability. Additionally, with this method, the measurement error of the laser ranging is smaller than 50 μm, further enhancing the accuracy of precision measurements based on ISLLs....
In recent years, telecom fraud remains prevalent in many regions, severely impacting people’s daily lives and causing substantial economic losses. However, previous research has mainly relied on expert knowledge for feature engineering, which lags behind and struggles to adapt to the continuously evolving patterns of fraud effectively. In addition, the extreme imbalance in fraud amounts within real communication data hinders the development of deep learning methods. In response, we propose a feature transformation method to represent users’ communication behavior as comprehensively as possible, and develop a convolutional neural network (CNN) with a Focal Loss function to identify rare fraudulent activities in highly imbalanced data. Experimental results on a real-world dataset show that, under conditions of severe class imbalance, the proposed method significantly outperforms existing approaches in two key metrics: recall (0.7850) and AUC (0.8662). Our work provides a new approach for telecommunication fraud detection, enabling the effective identification of fraudulent numbers....
This work presents a methodology for designing deployable reflector antennas that combine origami structures and the Fresnel zone plate lens to obtain a compact antenna structure. In particular, Miura and Yoshimura’s origami patterns have been considered for the design of the Fresnel reflector mirror and the conical horn antenna feeder, respectively. A set of memory-form alloy (MFA) actuators have been used to deploy the antenna. The MFA actuators are activated by a direct current aimed at increasing the temperature and activating the memorized shape. The combination of these techniques provides light, inexpensive, and very compact antennas, particularly suitable for satellite applications. A numerical and experimental assessment campaign has been carried out on antenna prototypes operating in the Ku band at 15 GHz. The obtained experimental results are quite promising....
Loading....