Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
G-quadruplex (G4) ChIP-Seq data are critical for studying the roles of G4 structures in various biological processes, yet their reproducibility remains systematically uncharacterized. In this study, we evaluated the consistency of in vivo G4 peaks across multiple replicates in three publicly available datasets. We observed considerable heterogeneity in peak calls, with only a minority of peaks shared across all replicates. To address this challenge, we compared three computational methods—IDR, MSPC, and ChIP-R—for assessing reproducibility and found that MSPC is the optimal solution in reconciling inconsistent signals in G4 ChIP-Seq data. We further demonstrated that employing at least three replicates significantly improved detection accuracy compared to conventional two-replicate designs, while four replicates proved sufficient to achieve reproducible outcomes, with diminishing returns beyond this number. Moreover, we showed that the reproducibility-aware analytical strategies can partially mitigate the adverse effects of low sequencing depth, though they do not fully substitute for high-quality data. Based on our findings, we recommend 10 million mapped reads as a minimum standard for G4 ChIP-Seq experiments, with 15 million or more reads being preferable for optimal results. Our study provides practical guidelines for experimental design and data analysis in G4 studies, emphasizing the importance of replication and robust bioinformatic strategies to enhance the reliability of genome-wide G4 mapping....
Metamaterial lattice structures based on a Triply Periodic Minimal Surface (TPMS) structure have attracted much attention due to their excellent mechanical properties and energy absorption capabilities. In this study, a novel TPMS lattice metamaterial structure (IWPX) is designed to enhance the axial mechanical properties by fusing an X-shaped plate with an IWP surface structure. A selective laser melting (SLM) machine was utilized to print the designed lattice structures with Ti6Al4V powder. The thickness of the plate and the density of the IWP are varied to explore the responsivity of the mechanical and energy absorption properties with the volume ratio of IWP-X. The finite element simulation analysis is used to effectively predict the stress distribution and fracture site of each structure in the compression test. The results show that the IWP-X structure obtains the ultimate compressive strength of 122.06% improvement, and the energy absorption of 282.03% improvement. The specific energy absorption (SEA) reaches its maximum value in the plate-to-IWP volume ratio of 0.7 to 0.8....
Twin-roll strip casting (TRSC) is a key development in near-net-shape casting technology, offering the potential for high-efficiency and low-cost production. During the TRSC process, the solidification characteristics of the strip are largely governed by the configuration of the melt delivery system as well as by various process parameters. In this study, a three-dimensional model of low-carbon steel strip casting was developed using ProCAST software to investigate microstructure evolution under industrial-scale conditions. Simulation results revealed that the solidified strip exhibits a typical three-layer structure: a surface equiaxed grain zone in contact with the cooling rolls, a subsurface columnar grain zone, and a central equiaxed grain zone. Introducing side holes into the delivery system promoted the formation of a distinct columnar grain region near the side dams, resulting in a reduction in the average grain size in this region from 43.7 μm to 38.2 μm compared to the delivery system without side holes. Increasing the heat transfer coefficient at the interface between the molten pool and the cooling rolls significantly enlarged the columnar grain zone. This change had little effect on the average grain size and grain density, with the average grain size remaining close to 37 μm and the grain density variation being less than 0.7%. In contrast, when the casting speed was raised from 50 m min−1 to 70 m min−1, a reduction in the area of the columnar grain zone was observed, while the average grain size decreased slightly (by less than 0.5 μm), and the grain density increased accordingly. This study provides valuable insights for optimizing process parameters and designing more effective melt delivery systems in industrial twin-roll strip casting....
Spread-tow woven fabrics (STWs) have attracted considerable attention owing to their thin-layered characteristics, high fiber strength utilization rate and superior designability, finding wide application in the aerospace field. To meet the application requirements for materials with high specific strength/specific modulus in the aerospace field, this study designed an anti-sandwich structured composite with high specific load-bearing capacity. Herein, the core layer was a load-bearing structure composed of STW, while the surface layers were hybrid lightweight structures made of STW and nonwoven (NW) felt. Repeated impact test results showed that increasing the thickness ratio of the core layer enhanced the impact resistant stiffness of the overall structure, whereas increasing the proportion of NW felt in the surface layers improved the energy absorption of the composites but reduced their load-bearing stiffness and strength. The composite exhibited superior repeated impact resistance, achieving a peak impact load of 17.43 kN when the thickness ratio of the core layer to the surface layers was 2:1 and the hybrid ratio of the surface layers was 3:1. No penetration occurred after 20 repeated impacts at the 50 J or 3 repeated impacts at 100 J. Meanwhile, both the maximum displacement and impact duration increased, whereas the bending stiffness declined as the number of impacts increased. The failure mode was mainly characterized by progressive interfacial cracking in the surface layers and fracture in the core layer....
Fe-CNT composites were synthesized via mechanical ball milling, incorporating varying amounts of carbon nanotubes (CNTs) into iron powder at concentrations of 1wt%, 2wt%, and 3wt%. The impact of dierent CNT contents on the phase structure, microstructure, and magnetic properties of the composites was examined. Raman spectroscopy and X-ray diraction (XRD) analyses revealed that despite some damage, CNTs retained a predominantly one-dimensional nanostructure post-ball milling. Moreover, an increase in CNT content led to a gradual rise in grain size and laice strain of the iron powder, aributed to the formation of solid solutions and iron–carbon compounds. Scanning electron microscopy (SEM) observations demonstrated that the majority of CNTs were integrated within the iron matrix particles, with a minority either partially embedded or entirely unembedded on the iron powder surface. With higher CNT concentrations, local CNT agglomeration emerged and intensied. Vibrating sample magnetometer (VSM) measurements indicated that Fe-CNT composites exhibited enhanced saturation magnetization (2.25%) and reduced coercivity (91.74%) compared to pure iron, underscoring the potential of CNTs in enhancing the magnetic properties of iron powder....
Loading....