Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
To address the building settlement issues induced by an urban geological hazard in a northern city, this study utilizes settlement monitoring data from 16 high-rise buildings. The non-uniform temporal data were processed using the Akima interpolation method to construct a settlement prediction model based on a backpropagation (BP) neural network. The model’s predictive performance was validated against traditional approaches, including the hyperbolic and exponential curve methods, and was further employed to estimate the stabilization time of building settlements. Additionally, spatiotemporal characteristics of settlement behavior under the influence of geological hazards were investigated through a comparative analysis of deformation data across the building group. The results demonstrate that the BP neural network model achieves a 58.3% improvement in predictive accuracy compared to traditional empirical methods, effectively capturing the settlement evolution of buildings. The model also provides reliable predictions for the time required for buildings to reach a stable state. The temporal evolution of building settlement exhibits a distinct three-stage pattern: (1) an initial abrupt phase dominated by rapid water and soil loss; (2) a rapid settlement phase primarily driven by the consolidation of sandy and clayey soils; and (3) a slow consolidation phase governed by the prolonged consolidation of cohesive soils. Spatially, building deformations show significant regional heterogeneity, and the existence of potential finger-like preferential pathways for water and soil loss appears to exert a substantial influence on differential settlements....
In Hungary, on-site mixed stabilization of cohesive soil is considered only as soil improvement not a proper pavement layer, therefore its bearing capacity is not taken into account when designing pavement. It was our hypothesis that on low-volume roads built on cohesive soil, lime or lime–cement stabilization can be an alternative to granular base layers. A case study was conducted to obtain initial results and to verify the research methodology. The efficacy of lime stabilization was evaluated across eight experimental road sections, with a view of assessing its structural and economic performance in comparison with crushed stone base layers reinforced with geo-synthetics. The results of the testing demonstrated elastic moduli of 120–180 MPa for the lime-stabilized layers, which closely matched the 200–280 MPa range observed for the crushed stone bases. The results demonstrated that lime stabilization offers a comparable load-bearing capacity while being the most cost-effective solution. Furthermore, this approach enhances sustainability by enabling the utilization of local soils, reducing reliance on imported materials, minimizing transport-related costs, and lowering carbon emissions. Lime stabilization provides a durable, environmentally friendly alternative for road construction, effectively addressing the challenges of material scarcity and rising construction costs while supporting infrastructure resilience. The findings highlight its potential to replace traditional base layers without compromising structural performance or economic viability....
In West Africa, controlling the thermal behavior of pavements is a major challenge. This study presents the design and calibration of an economical device for measuring the thermal diffusivity of granular materials. The method is based on the numerical resolution of the one-dimensional heat equation using temperature data acquired by three sensors. The device enables temperature to be measured as a function of time for a minimum duration of 3600 seconds per test. Calibration, carried out on dry gully sand, yielded an average thermal diffusivity value of 3.35 × 10−7 m2/s, with a relative error of 5.4% compared with the documented reference value of 3.17 × 10−7 m2/s....
In this study, steel fibers were used to improve the mechanical properties of high-strength self-compacting concrete (HSSCC), and its effect on the fracture mechanical properties was investigated by a three-point bending test with notched beams. Coupled with the digital image correlation (DIC) technique, the fracture process of steel-fiber-reinforced HSSCC was analyzed to elucidate the reinforcing and fracture-resisting mechanisms of steel fibers. The results indicate that the compressive strength and flexural strength of HSSCC cured for 28 days exhibited an initial decrease and then an enhancement as the volume fraction (Vf) of steel fibers increased, whereas the flexural-to-compressive ratio linearly increased. All of them reached their maximum of 110.5 MPa, 11.8 MPa, and 1/9 at 1.2 vol% steel fibers, respectively. Steel fibers significantly improved the peak load (FP), peak opening displacement (CMODP), fracture toughness (KIC), and fracture energy (GF) of HSSCC. Compared with HSSCC without steel fibers (HSSCC-0), the FP, KIC, CMODP, and GF of HSSCC with 1.2 vol% (HSSCC-1.2) increased by 23.5%, 45.4%, 11.1 times, and 20.1 times, respectively. The horizontal displacement and horizontal strain of steel-fiberreinforced HSSCC both increased significantly with an increasing Vf. HSSCC-0 experienced unstable fracture without the occurrence of a fracture process zone during the whole fracture damage, whereas the fracture process zone formed at the notched beam tip of HSSCC-1.2 at its initial loading stage and further extended upward in the beams of high-strength self-compacting concrete with a 0.6% volume fraction of steel fibers and HSSCC-1.2 as the load approaches and reaches the peak....
As an effective engineering countermeasure against frost heave damage in seasonally frozen regions, thermal insulation boards (TIBs) were employed in embankments. This study established a test section featuring a thermal insulation–waterproof geotextile embankment in Dingxi, Gansu Province. Temperature and water content at various positions and depths within both the thermal insulation embankment (TIE) and an ordinary embankment (OE) were monitored and compared to analyze the effectiveness of the TIB. Following the installation of the insulation layer, the temperature distribution within the embankment became more uniform. The TIB effectively impeded downward heat transfer (cold energy influx) during the winter and upward heat transfer (heat energy flux) during the warm season. However, the water content within the TIE was observed to be higher than that in the OE, with water accumulation notably occurring at the embankment toe. While the TIB successfully mitigated slope damage and superficial soil frost heave, the waterproof geotextile concurrently induced moisture accumulation at the embankment toe. Consequently, implementing complementary drainage measures is essential. In seasonally frozen areas characterized by dry weather and relatively high winter temperatures, the potential damage caused by concentrated rainfall events to embankments requires particular attention....
Loading....